Ultrafast‐Charging Supercapacitors Based on Corn‐Like Titanium Nitride Nanostructures
نویسندگان
چکیده
منابع مشابه
Ultrafast‐Charging Supercapacitors Based on Corn‐Like Titanium Nitride Nanostructures
Ultrahigh rates realized by ALD-made TiN. The symmetric full-cell supercapacitors deliver a typical capacitance of 20.7 F cm-3 at a scan rate of 1 V s-1, and retain 4.3 F cm-3 at high rate of 100 V s-1. The devices can be charged and discharged for 20 000 cycles with negligible capacitance loss and with an ultralow self-discharge current (≈1 μA).
متن کاملOptical properties and plasmon resonances of titanium nitride nanostructures.
We examine the optical properties of nanostructures comprised of titanium nitride, TiN, an electrically conducting intermetallic-like compound. This material can be deposited in the form of durable films by physical vapor deposition. Use of nanosphere templating techniques extends the range of nanostructures that can be produced to include the versatile semi-shell motif. The dielectric properti...
متن کاملAmorphous titanium-oxide supercapacitors
The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here...
متن کاملInterface Investigations on Titanium Nitride Bilayer Systems
Nanocomposite coatings composed of two phases with atomically sharp phase boundaries, show interesting mechanical properties. These properties are often originating from their high interface to volume ratio. Composites of nanocrystalline titanium nitride (TiN) grains surrounded by a one to two monolayer thick interlayer of silicon nitride (Si3N4) show an enhanced nanohardness. The central theme...
متن کاملTitanium nanostructures for biomedical applications.
Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Science
سال: 2015
ISSN: 2198-3844,2198-3844
DOI: 10.1002/advs.201500299